¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-CONF-214107

Extracting Critical Path Graphs
from MPI Applications

M. Schulz

July 28, 2005

IEEE Cluster 2005
Boston, MA, United States
September 27, 2005 through September 30, 2005

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Extracting Critical Path Graphsfrom MPI Applications

Martin Schulz
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
schulzm@linl.gov

Abstract

The critical path is one of the fundamental runtime char-
acteristics of a parallel program. It identifies the longest
execution sequence without wait delays. In other words,
the critical path is the global execution path that inflicts
wait operations on other nodes without itself being stalled.
Hence, it dictates the overall runtime and knowing it is im-
portant to understand an application’s runtime and mes-
sage behavior and to target optimizations.

We have developed a toolset that identifies the critical
path of MPI applications, extracts it, and then produces
a graphical representation of the corresponding program
execution graph to visualize it. To implement this, we in-
tercept all MPI library calls, use the information to build
the relevant subset of the execution graph, and then extract
the critical path from there. We have applied our technique
to several scientific benchmarks and successfully produced
critical path diagrams for applications running on up to 128
processors.

1 Motivation

The critical path of a parallel application is a fundamen-
tal metric for its execution. It represents the longest exe-
cution sequence without wait delays and hence dictates the
complete overall runtime: adding to the critical path will di-
rectly increase the runtime, while shortening or optimizing
sections of the critical path will result in a reduction of the
overall runtime. On the other hand, changing the execution
time of program sections not on the critical path will not
affect the program runtime.

Knowing the critical path allows the user to character-
ize the application and its communication behavior, explore
differences in the execution behavior with respect to scaling
and parameter changes, and identify potential bottlenecks or

OThis work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Lab-
oratory under contract No. W-7405-Eng-48 (UCRL-CONF-214107).

performance problems. It is also a prerequisite for dealing
with scalability problems in performance analysis and opti-
mization. The increasing number of nodes in modern clus-
ters, often reaching thousands, makes it impossible to inves-
tigate, manually analyze, or often just visualize the perfor-
mance data collected from all nodes. Knowing the critical
path, however, enables us to restrict optimization efforts to
the relevant parts of the execution.

In this paper we present an hybrid online/post-mortem
approach to identify, isolate, and visualize the critical path
of MPI applications. During the online component we
gather information on each processor locally, in order not
to add additional communication requirements. After pro-
gram termination we combine the individual local results
for global analysis.

In order to implement our approach, we abstract the pro-
gram as an execution graph in which all MPI communica-
tion operations are shown as nodes. Directed edges repre-
sent both sequential execution within one processor as well
as message events between processors. The critical path is
then a subset of the complete execution graph. To extract
it, we build relevant subsets dynamically at runtime using
an MPI wrapper library that traces all MPI communication
operations. At each receive operation, we identify the ex-
ecution graph edges that do not incur a wait time and are
hence potentially part of the critical path; we store them as
part of a local subgraph. After the termination of the ap-
plication, we merge these subgraphs, identify which of the
potential edges stored in the local graphs are actually part
of the completed global critical path, prune the remaining
nodes, and export to result in a portable graph format for
visualization and further processing.

This graph shows all sections in the program’s execution
that contribute to the critical path as well as all communi-
cation events that cause the critical path to transit between
processors. The graph form has the further advantage, in
contrast to profiling data or tabular representations, that it
retains much of the structural information of the initial ap-
plication execution and with that eases further high-level
analysis steps.

Recv Send

Barrier

Recv Send

Figure 1. Sample Execution Graph.

2 Critical Pathsin MPI Applications

To analyze the critical path of an MPI application, we
represent an instance of the application execution as a di-
rected graph, which we will refer to as the execution graph?.
This graph contains a node for each MPI operation (e.g.,
MPI_Send or MPI_Recv) and edges between send and re-
ceive pairs as well as between nodes that are in consecutive
execution order. We will refer to the former as communica-
tion edges and to the latter as program edges. In addition,
we will add a global node for each barrier with communi-
cation edges to and from each processor, and also introduce
such a barrier node at the end of the program to capture
program termination. Figure 1 shows an example of such
a graph. In this example, we see a program execution on
three processors P, Q, and R. Dotted arrows show program
edges, while solid arrows show communication edges.

The critical path of a program is the path through the
execution graph that determines the program’s overall run-
time. This path has the property that any delay on this path
will directly translate into a longer runtime, while any opti-
mization along this path will result in an overall reduction
in runtime. The traditional approach to detect and extract
the critical path is to annotate all program edges with the
CPU time (excluding wait operations) that was measured
during the program execution along these edges. The criti-
cal path is then computed as the longest path from the start
node to the end node with respect to these annotations. This
requires a global search across the whole graph, which is
often time and resource consuming.

The critical path, however, can also be piecewise identi-
fied by examining all receive operations using the following
two observations:

The critical path can not contain program edges lead-
ing to receive nodes that incur a blocking wait time.

This is true, because any delay along this program edge
(up to the wait time incurred at the receive) will only de-
crease the wait time, but not delay the overall execution.
This is contrary to the definition of the critical path.

1Similar representations are sometimes also called Program Activity
Graph (PAG), Space-Time Diagram, or Event Diagram.

Exclude from CP

) Send ‘
rRecv

Exclude from CP

Potentially
part of CP

Send

E
zZ
Z
Z

Potentially
part of CP

No wait

Recv

Figure 2. Wait scenarios at receive opera-
tions.

F

Figure 3. Finding the critical path.

Similarly, the following statement holds as well:

The critical path can not contain communication
edges, which do not lead to blocking wait times.

In this case, the message had already arrived at the time
the receive operation was called and hence was immediately
received. Delaying the message (up to the time difference
between the actual message arrival and the matching receive
operation) can again be tolerated without runtime increase.

These two scenarios are shown in more detail in Figure 2.
Using these rules, we can extract the critical path from the
message graph by excluding edges not on the critical path
and recording only the remaining ones as a partial execution
graph without requiring a global search. When we combine
these edges using backtracking from the termination node,
we are then able to gather all components of the critical path
and create a single representation of the complete critical
path graph.

Figure 3 illustrates this further using the execution graph
from Figure 1: process Q waits at its first receive operation
for a message from process R. Hence, any delay in process
Q (up to the wait time) can be compensated by waiting less
time, while any delay in process R will cause Q to wait
longer. Hence we store the edges on R as potentially being
on the critical path. During the second receive, however, no
wait occurs, i.e., the message has arrived before the receive
operation is executed. Consequently process P is not part of
the critical path and only the program edge of Q is stored.
Similarly we classify the incoming edges at barrier nodes:
the last process to arrive does not have to wait and hence is
added to the graph.

3 Implementation

The critical path is a global property and hence some
form of global operation is required to extract it. In this
section we describe our approach to identify the critical
path without having to introduce additional communication
paths or requiring a global search, and with no code changes
to the target application.

3.1 Approach

We construct the critical path in two steps: first we col-
lect local information at runtime on each processor and cre-
ate subgraphs with critical path information. Second, we
use offline, post-mortem analysis to merge the local sub-
graphs into a global graph and extract the critical path.

The architecture of our system is illustrated in Figure 4.
To extract the critical path from a running application we
must intercept all communication events. For this, we inter-
pose our implementation into any MPI communication call
using a wrapper library. Within the wrapper we apply the
rules discussed in Section 2 at each receiving node. Based
on this information we build local, partial execution graphs
for each processor containing all edges that could poten-
tially be part of the global, critical path.

Once the program is complete, each processor writes its
partial execution graph to storage. In a postprocessing step,
our tool reads all local graphs, merges them, performs sev-
eral automatic graph analysis and reduction steps, and then
exports the final graph in the portable and open graph for-
mat GML (Graph Modeling Language [7]).

Application
MPI Wrapper CP Analysis
native MPI graphlib
Partial M
Execution P QR s
graph v
: node 0 : Merge Critlcrgl ﬁa[h
. and grap
. y 5 Extract
Application
MPI Wrapper CP Analysis GML
native MPI graphlib Viewer
Partial
Execution
graph
node N-1
L
T T
online post-mortem

Figure 4. Architecture of the toolset to extract
the critical path.

3.2 Graphlib

To enable efficient, yet high-level graph handling, we
have developed graphlib, a library to create and manipulate
multiple independent, arbitrary graphs. Besides the manda-
tory graph manipulation routines to create and delete graphs
and to add and remove nodes and edges, graphlib contains
several high-level analysis routines, as well as the ability
to export graphs into several portable, open graph formats,
including DOT [11] and GML [7].

Within graphlib all information about nodes and edges is
stored in linked lists of fragments. Each fragment can hold
a static number of entries and a graph can have an arbitrary
number of node and edge fragments. This provides a suit-
able trade-off between memory management overhead and
memory fragmentation.

In order to support fast node or edge addition and re-
moval, while maintaining memory efficiency, each graph in
graphlib also maintains free lists for both nodes and edges,
which directly point to the individual entries inside the frag-
ments. As a consequence, both node and edge deletions and
additions can be performed in constant time.

3.3 Send/Recv Operations

Using graphlib, we maintain a local, partial execution
graph on each processor of the MPI application. Starting
with an empty graph at program start, we add a node at each
send and receive operation. In order to establish a global,
partial order, we associate each node with a local timestamp
and include this timestamps in any send operation in the
form of piggybacked data®. At each receive operation, the
local timestamp is compared to the timestamp received as
part of the incoming message and set to the maximum of
the two values.

At each receive operation, we apply the rules introduced
in Section 2. For this, we need to query whether a message
has arrived prior to posting a matching receive or not, in or-
der to decide which edge is potentially part of the critical
path. Unfortunately, MPI does not provide a direct mech-
anism to determine this. Hence, we have to rely on indi-
rect observations to distinguish between these two cases:
we tried both deducing this from the measured execution
time of a blocking MPI operation and querying the MPI
layer prior to posting the receive using a probe operation.
Both mechanisms work, but we found the latter mechanism
to be more reliable.

It should be noted, though, that a misclassification,
which can happen with both mechanisms if wait times are

2We use the piggyback mechanism mentioned inthe C'3 system [15]. It
is based on constructing new datatypes which augment the sendtype with
the piggyback data.

short, is not critical. In this case the execution time dif-
ference between the two potential paths is small — large
differences stemming from large wait times are correctly
detected in both cases.

Once this classification is made, we can add the respec-
tive edge to the local graph: in the case the receive is ex-
ecuting a blocking wait, i.e., the receive is posted before
the message arrives, we add the incoming communication
edge; in the other case, i.e., the message is already present
before reaching the receive, we add the program edge to the
previous node on the same process.

At each send operation, we add a program edge to the
previous node on the same process if and only if that previ-
ous node is part of the existing local subgraph, i.e., is poten-
tially on the critical path. Asynchronous sends are handled
in the same way as blocking sends, while asynchronous re-
ceives are ignored and the analysis for receives is instead
applied to the corresponding wait operations.

Collective communication operations are treated as a set
of individual point-to-point messages, since this provides us
with a clear indication of which node inflicts a wait time on
the overall process. Barriers, on the other hand, are treated
separately: in this case we measure the execution time of
the barrier on all nodes and add a communication edge from
the node with the lowest barrier time, since presumably this
process reached the barrier last and is hence guaranteed to
be part of the critical path. For this, however, we have to
add an MPI_Allreduce for each barrier to find this minimal
waittime.

In addition to the actual node information, we also store
information about the call stack of the MPI function asso-
ciated with each node by unwinding the local stack. In the
completed graph, the user can then use this information to
identify the nodes on the critical path and with that the parts
of the code with the highest potential for optimizations.

3.4 Graph Analysis

After the termination of the application, each processor
writes its partial graph to disk. A postprocessing tool based
on graphlib reads all partial graphs, merges them into a sin-
gle one, analyzes the graph to extract the critical path, and
exports it into GML.

The merge utility applies a set of analysis and graph re-
duction steps. We illustrate this in Figure 5 using a small
sample application. All of these graphs are generated by
graphlib’s GML export filter and visualized using the freely
available graph editor yed [18]. In all graphs, each col-
umn of nodes represents one process and the virtual time
(i.e., the timestamps) grows monotonically from top to bot-
tom. Graph a) shows the unoptimized graph, the following
graphs the results of the consequent optimization steps de-
scribed below:

Critical Path Detection: To detect the critical path we
start at the final barrier node recorded right before program
termination and backtrack on the edges identified as poten-
tially being on the critical path. The critical path is complete
once the initial node in any processor is reached (as shown
in graph b). It is guaranteed that exactly one such path ex-
ists since any receive operation has exactly one potential
critical edge associated with it. Hence, in each step of the
backtracking process it is guaranteed that exactly one po-
tentially critical edge can be found as incoming edge to the
node in question. During this process we color all nodes and
edges on the critical path red, leaving all nodes and edges
in the remaining graph gray and green respectively.

Graph Pruning: Sections of the graph that are not part
of the critical path can be removed by pruning. However,
edges leading away from the critical path are potentially rel-
evant from a program optimization point of view, since the
wait times that are associated with them indicates the delay
the critical path inflicts at this point on the program execu-
tion and hence are directly correlated with the optimization
potential. We therefore keep these nodes with a distance of
one from the critical path.

To prune the graph, we follow the critical path and ap-
ply a pruning step to each node pointed to by an edge from
a node on the critical path. In this step, we delete all sub-
graphs from that node, leaving only the node itself and the
edge leading to it. For efficiency reasons, this pass is com-
bined with the actual critical path detection and coloring.
The result of this pruning step is shown as graph b).

Graph Collapsing: Pruned graphs often contain large
node chains connected by program edges, i.e., nodes rep-
resenting consecutive MPI operations within one process.
This is especially true for codes with large number of pro-
cessors (e.g., caused by a set of sequential send operations
to all processors). However, it is only relevant to record
at which points the critical path transitions between proces-
sors. Hence, these chains of program edges can be collapsed
and each replaced by a single edge.

To implement this, we scan all nodes of the graph for
those that are only connected to a single incoming and a
single outgoing program edge. These nodes, as well as the
outgoing edges, are deleted and their incoming edge is ex-
tended to the node originally following the outgoing edge.
Graph c) is the resulting collapsed graph.

Nodescaling: During the graph generation we record the
wait time for each receive operation at that node. In this
last graph manipulation step, we first compute the maxi-
mum and minimum value of these wait times and then use
these results to scale the node parameters. In the final graph,
these parameters are then used to render the size of the

a) After merge b) After Pruning

P ——

c) After Collapse d) After Scaling

Figure 5. Steps in the Graph Analysis (graphs generated with yed [18]).

nodes: large nodes represent long wait times, small ones
short waits. The final graph is shown as graph d).

The graph pruning and collapsing steps are critical to re-
duce the size of the final graph. When executed solely as
a postprocessing step, we have to create and store the com-
plete local execution graphs at runtime. Further, the post-
processing step has to merge all subgraphs, which leads to
significant resource requirements. It is therefore important
to prune and collapse the graph as much as possible already
at runtime.

However, since the critical path can only be determined
using backtracking from the final node in the graph, full
pruning at runtime is not possible. Nevertheless, we can
prune partial graphs that can be excluded because they are
guaranteed not to be on the critical path. For this, we ex-
amine again the two cases of edge classification, as shown
in Figure 2 and described in Section 2. In the case that the
program edge leading to the receive node is excluded from
the critical path, we can delete this edge and recursively the
path leading to this edge until we reach a node that can again
potentially be part of the critical path.

In the other case, that the communication edge is ex-
cluded from the critical path, we can also delete this edge
and the path leading to it. Unlike the first case of deleting
a program edge, which is a local operation, the deletion of
a communication edge requires deleting part of the graph
stored on another node. To avoid additional communica-
tion, we do not send the prune request right away, but rather
store it in a local buffer. During the next application mes-
sage to this node, we add this prune request to the piggy-
back data. The receive operation on any node checks for
these extra requests in the receive wrapper and executes it.
This operation can then in turn lead to another prune request

on a different node, which again is stored in the local buffer
waiting for the next message send to that particular node.

It should be noted that, in case this local buffer is full,
pruning requests can be dropped without impacting correct-
ness. Similarly, pruning requests that remain at program
termination do not have to be executed. Unpruned parts of
the graph will be removed during the postprocessing steps.

3.5 Limitations

Our approach currently does not work for applications
using busy wait loops in cooperation with MPI _Test opera-
tions. Here, the analysis can not detect the reason for ap-
plication progress and associate the correct edges with the
critical paths. The only way solve this problem is to intro-
duce appoproriate user annotations that identify when the
program is idling and waiting for a message to arrive or
when it is in a busy wait loop still executing useful work.
In the former case, the edge associated with the incoming
message is part of the critical path, while in the latter case
it is not.

Further, long running experiments are currently not fea-
sible with our approach, since we collect the critical path
graphs on each node throughout the entire runtime and write
the complete graph at the termination of the application.
This means that the resource requirements to store the graph
naturally grow over the runtime of the application, even
with the above mentioned pruning techniques in place. For
this, we are extending the approach to periodically store the
local subgraphs and reset the graph generation. This re-
duces the pressure on resources at runtime, at the cost of
increased postprocessing.

In case of applications with tight synchronization, e.g., in
the form of repeated barrier operations, these synchroniza-

tion points form a natural location for these partial graph
saves. At these points, we know that the graph node rep-
resenting the global synchronization has to be part of the
critical path and hence we can apply the extraction and
pruning steps independently between each synchronization
point. This, however, requires an extension of graphlib to
enable the concatenation of multiple, partial or phase-wise
critical paths.

Nevertheless, it will not be possible to fully mitigate
these resource problems. Our approach targets the explicit
generation of critical path graphs with the goal to study their
topology. The size of this graph will by its nature always be
linear to the number of MPI operations per processor. |If
this is a problem, the user should use to critical path pro-
filing methods like described in [8, 9]. Those incur less
overhead and resource requirements, but at the trade-off of
having less expressiveness in the results.

4 Examplesand Evaluation

We conducted all of the following experiments on MCR,
a 1152 node cluster at LLNL. Each node is equipped with
two 2.4 MHz Dual Xeon processors, 4 GByte of memory,
and is connected using Quadrics’s QsNet (Elan-3). The sys-
tem uses the CHAOS-2 Linux distribution, which is based
on Redhat Enterprise Linux 3. The benchmarks were com-
piled using gcc 3.2.3 and linked to Quadrics’s MPI imple-
mentation, which is based on MPICH-1, but modified to
take advantage of Quadrics’s QsNet.

We present results using two well-known scientific appli-
cations: SMG2000 and HPL. The former is a Semicoarsin-
ing Multigrid Solver based on the Hypre library [5], and the
latter is a portable high-performance implementation of the
Linpack benchmark [13].

41 Stability

The critical path of an application is a runtime property
and hence can vary from run to run of an application, even
when used with the same application parameters. This is
especially true, if the application contains message non-
determinism, e.g., in the form of wildcard receives. How-
ever, in order to be useful for static program analysis and
optimization, these differences should be minimal.

Figure 6 shows the critical path of four separate
SMG2000 runs with identical parameters on four proces-
sors after pruning, collapsing, and scaling. The four graphs
are almost identical; only during initialization and termi-
nation small variations exist. However, the concrete wait
times (shown by the different node sizes), do vary from run
to run. This result shows that the critical path is a quite
stable program characteristic for SMG2000, despite timing

differences in consecutive runs. Similar observations can
also be made for HPL.

4.2 Interpretation

The critical path of SMG2000 (Figure 6) indicates at
least two distinct phases. First, the critical path shows an
irregular pattern across all nodes and with longer sections
in which the critical path is dominated by a single processor
(rank two). This is followed by a phase where the critical
path of SMG2000 only transitions between processes one,
two, and three. Rank zero is, except for minor parts, not
affected. Interesting is also to notice that long delays can
mostly be observed in the first phase of the program (large
nodes), while in the remainder of the program all wait times
are small and roughly equal. This indicates that optimiza-
tions on the critical path are likely to have a larger impact
in the first phase of this program.

4.3 Scalability

In this section we look at the scaling properties of critical
paths. For this, we run HPL on 32, 64, and 128 processors.
The resulting graphs can be seen in Figure 7. All graphs
show similar patterns. Wait times are fairly uniformly dis-
tributed and no single node plays an outstanding role. To-
wards the end of the execution, we see a stair-case effect
indicating some kind of serialization. The operations after
this serial phase show a logarithmic communication pattern
as it is typical in collective operations.

In general, the graphs show that the shape of the critical
path of HPL does not significantly change when scaled to
larger numbers of processors. This indicates that the criti-
cal path can be a useful property that holds across scaling
boundaries and hence enables a prediction of code charac-
teristics on system sizes not tested earlier.

4.4 Graph Sizes

Table 1 shows the number of nodes for both benchmarks
running on various system sizes. For each configuration,
the table shows the size for an unpruned, full graph, after
pruning subgraphs not on the critical path, and after the final
collapsing operation. It should be noted that the number of
edges is always one less than the number of nodes since all
graphs in questions are trees. Consequently, we are only
reporting node numbers.

The data shows a significant difference in the number
of nodes between the full graph, which represents a naive
implementation, and the pruned graph. The latter, as well
as the collapsed graph, show a significantly reduced graph
size, which enables a more efficient and easier handling and
visualization of the resulting graph.

H*,
T

._/‘ ~\

] Lﬂ | |

| [

Y

ol
J A

Tl
i
|
|
|

L

|
\“ “Q’

 S—

Figure 6. Critical path graphs for SMG2000 (4 processors) of repeated runs with identical parameters

(graphs generated with yed [18]).

a) 32 processors b) 64 processors ¢) 128 processors

Figure 7. Critical paths of HPL on various system sizes (graphs generated with yed [18]).

Number Full Pruned | Collapsed

Benchmark | of CPUs graph graph graph
SMG2000 4 495 165 109
SMG2000 8 1863 324 198
SMG2000 16 6767 595 340
SMG2000 32 25079 1044 442
SMG2000 64 95551 1745 958
SMG2000 128 371719 3392 825
HPL 4 538 219 214
HPL 8 1434 329 319
HPL 16 3546 454 446
HPL 32 8410 587 573
HPL 64 19418 752 732
HPL 128 43994 1023 1005

Table 1. Number of nodes used in the gener-
ated critical path graphs.

Besides showing the feasibility of the approach, these
numbers also indicate its opportunities. The graph analy-
sis algorithm discussed in this paper is able of reducing the
full trace information in the form of the complete program
execution graphs to a minimal set of nodes that contain the
important information, while discarding the rest. Further
analysis steps by further tools or manual examination are
therefore made easier.

45 Overhead

Table 2 shows the overhead caused by adding our sys-
tem to SMG2000. This includes the overhead caused by our
transparent piggybacking, the wait-time observations at re-
ceives, as well as the actual subgraph generation. We com-
pute these numbers by comparing the application execution
time with our mechanism to the execution time of an un-
modified version of SMG2000 at same optimization levels
(-02). The table shows both relative and absolute numbers
for 32 and 64 processors on a range of working set sizes per
processor.

For small working set sizes and short runtimes, the ini-
tialization overhead dominates resulting in large overheads
of over 40%. With increasing working sets (which are typ-
ical in realistic usage scenarios of SMG2000) this over-
head drastically reduces to acceptable levels of under 8%.
For very large working set sizes, the overhead rises again
slightly, most likely caused by the larger execution graphs,
which need to be extracted and stored. However, at those
large working set sizes, the overhead is still only around
12%. The same experiments on HPL resulted in similar
overhead numbers of 4%-11% at large enough runtimes. In
general, we expect to reduce these numbers with further op-
timizations within graphlib and by investigating more ag-
gressive pruning.

5 Redated Work

The concept of a critical path as a means to identify per-
formance problems and to steer optimizations has been ex-
plored in several areas. Barford and Crovella [3] use it to
study the performance of TCP in the context of HTTP trans-
actions. Tullsen and Calder [16] discuss the use of critical
path information to reduce dependencies in binary codes
and also Intel integrates a similar functionality into their
Thread Checker tool [17].

In the context of parallel, message passing programs,
Alexander et al. [2] compute Near Critical Paths using
search algorithms on execution graphs in which each pro-
gram edge is weighted with the computational complexity
of the corresponding program section. In contrast to our
work, they require global searches across the whole graph,
which is not necessary in our approach. Instead, a straight-
forward backtracking through the graph is sufficient.

Closely related to the work presented here is the critical
path profiling by Hollingsworth [8, 9]. This work employs
a sophisticated online mechanism built on top of dynamic
instrumentation to collect the necessary input. The infor-
mation collected in this project is, however, geared towards
aggregated metrics and based on a per-function evaluation.
It is not possible to extract the full structural information
of the critical path and to visualize it. On the other hand,
though, restricting information to such aggregates dramati-
cally reduces the pressure on resource requirements.

Besides the generation and analysis of critical paths, sev-
eral other approaches exist to determine execution charac-
teristics of parallel programs and to find potential optimiza-
tion points. The traditional approach is the generation of
trace files, which are then analyzed post-mortem, mostly
manually with the help of visualization tools. Examples for
this can be found in Tau [4], Vampir [12], or Paraver [14].
The PARADIS project [6] uses event graphs, which are sim-
ilar to the execution graphs used in this paper, to detect per-
formance anomalies and bottlenecks. Ahn and Vetter [1]
use statistical methods, e.g., cluster analysis, to group pro-
cessors of similar execution behavior and Nagel et al. [10]
apply statistical methods to predict upper and lower bounds
for the cost of MPI routines.

6 Conclusionsand Future Work

The critical path is a runtime characteristics of an execu-
tion instance of a parallel program. It identifies the longest
path through the execution graph without waits and hence
is the path that dictates the overall execution time. Know-
ing this critical path is useful to understand the program and
communication behavior of an application. Further, the crit-
ical path can be used to steer optimization efforts, since any

[Working set size || 30% | 403 | 50% | 60° | 703 | 80° |
32 processors 43.55% | 33.93% | 20.53% | 10.38% 6.07% 8.64%
(absolute) 1.55s 2.58s 3.19s 2.69s 2.65s 5.30s
64 processors 46.34% | 37.00% | 21.28% 7.88% | 11.79% | 12.02%
(absolute) 1.78s 2.96s 3.42s 2.15s 5.01s 7.51s

Table 2. Overhead for computing the critical path for SMG2000.

reduction of the critical path directly translates into an over-
all reduction in runtime.

In this paper, we presented a toolset to automatically an-
alyze the execution of MPI applications and to detect and
isolate the critical path. This is done in a two step pro-
cess: first each processor generates a local subgraph, which
is then merged post-mortem with all other subgraphs into
a global execution graph. We then use this graph to iden-
tify the critical path and export the result into a public and
portable graph format. Using existing graph viewers, the
user can then inspect the critical path.

We have demonstrated this ability using two well-
established scientific benchmarks (SMG2000 and HPL) on
up to 128 processors. For both applications, the critical path
revealed details about the communication behavior of the
respective application without requiring explicit knowledge
of the source code.

We will use the techniques presented here as the basis for
our future work on scalable performance analysis and ap-
plication characterization. For the former, we will combine
the toolset represented here with existing sequential perfor-
mance tools by applying these tools solely to the critical
path and thereby reducing the amount of gathered data. As
for the latter, we will apply machine learning techniques, as
well graph analysis algorithms to identify phases or sections
of critical paths and to compare critical paths for multiple
executions with different parameters.

References

[1] D. Ahn and J. Vetter. Scalable analysis techniques for mi-
croprocessor performance counter metrics. In Proceedings
of IEEE/ACM Supercomputing 02, Nov. 2002.

C. Alexander, D. Reese, and J. C. Harden. "near-critical path
analysis of program activity graphs”. In MASCOTS, pages
308-317, 1994.

P. Barford and M. Crovella. Critical path analysis of TCP
transactions. ACM S GCOMM Computer Communication
Review, 31(2):80-102, 2001.

R. Bell, A. Malony, and S. Shende. ParaProf: A Portable,
Extensible, and Scalable Tool for Parallel Performance Pro-
file Analysis. In Proceedings of the International Con-
ference on Parallel and Distributed Computing (Euro-Par
2003), pages 1726, Aug. 2003.

R. Falgout and U. Yang. hypre: a Library of High Per-
formance Preconditioners. In Proceedings of the Interna-

(2]

(3]

[4]

[5]

(6]

[7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

10

tional Conference on Computational Science (ICCS), Part
111, LNCSvol. 2331, pages 632—641, Apr. 2002.

C. Glasner, E. Spiegl, and J. Volkert. PARADIS: Analysis
of Transaction-Based Applications in Distributed Environ-
ments. In Proceedings of the 5th International Conference
in Computational Science (ICCS), Part I, LNCSvaol. 3515,
pages 124-131, May 2005.

M. Himsolt. "gml: A portable graph file format”. Technical
report, Universitat Passau, Germany, 1995.

J. Hollingsworth. An Online Computation of Critical Path
Profiling. In Proceedings of the 1st ACM S GMETRICS
Symposium on Parallel and Distributed Tools, pages 11-20,
May 1996.

J. Hollingsworth. Critical Path Profiling of Message Pass-
ing and Shared-Memory Programs. |EEE Transactions on
Parallel and Distributed Systems, 9(10):1029—-1040, 1999.
M. Kluge, A. Kniipfer, and W. Nagel. Statistical Methods for
Automatic Performance Bottleneck Detection in MPI Based
Programs. In Proceedings of the 5th International Confer-
ence in Computational Science (ICCS), Part I, LNCS vol.
3514, pages 330—338, May 2005.

E. Koutsofios and S. C. North. Drawing graphs with dot.
Murray Hill, NJ.

W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and
K. Solchenbach. VAMPIR: Visualization and analysis of
MPI resources. Supercomputer, 12(1):69—-80, 1996.

A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. Hpl -
a portable implementation of the high-performance linpack
be nchmark for distributed-memory computers. Available at
http://www.netlib.org/benchmark/hpl/.

V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER:
A tool to visualise and analyze parallel code. In Proceed-
ings of WoTUG-18: Transputer and occam Developments,
volume 44, pages 17—31, Amsterdam, 1995. 10S Press.

M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques,
K. Pingali, and P. Stodghill. Implementation and evaluation
of a scalable application-level checkpoint-recovery scheme
for MPI programs. In Proceedings of IEEE/ACM Supercom-
puting 04, Nov. 2004.

D. Tullsen and B. Calder. Computing Along the Critical
Path. Technical report, UC San Diego Technical Report,
1998.

. Website. Intel (R) Thread Checker 2.1.
http://www.intel.com/software/products/threading/tcwin/,
2005.

yWorks. YEd Java Graph
http://iwww.yworks.com/en/products_yed _about.htm,
May 2005.

Editor.

